

THE KING'S SCHOOL

2007 Higher School Certificate **Trial Examination**

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

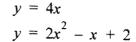
- Attempt Questions 1-10
- All questions are of equal value

Total marks – 120 Attempt Questions 1-10 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

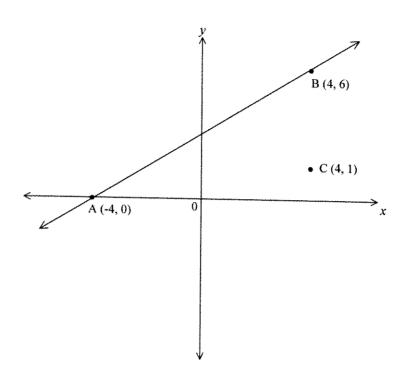
Question 1 (12 marks) Use a SEPARATE writing booklet. Marks Calculate, correct to three significant figures, 12 tan² 1 (a) 2 Simplify $\frac{x+1}{1+\frac{1}{x}}$ (b) 2 Solve $|3x + 4| \le 5$ (c) 2 Solve $3^x = 2$ correct to two decimal places. (d) 2 Differentiate $1 + \frac{1}{x}$ (e) 2 Find a primitive of $(2x + 9)^3$ (f) 2

(a) Solve simultaneously



3

(b)



The diagram shows the points A(-4, 0), B(4, 6) and C(4, 1). O is the origin.

(i) Find the gradient of the line AB.

1

(ii) Deduce that the equation of the line AB is 3x - 4y + 12 = 0

2

(iii) The perpendicular from C (4, 1) meets line AB at D. i.e. $CD \perp AB$ at D. Find the length of CD.

2

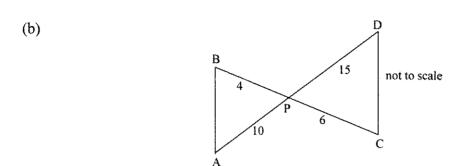
(iv) Find the length of DB.

1

3

(c) Find the equation of the tangent to the curve $y = x^3 - 2x^2$ at the point (-1, -3).

(a) Evaluate $\int_0^2 \frac{12x}{x^2 + 2} dx$ expressing your answer in simplest exact form.

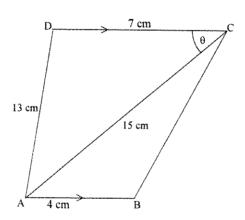


In the diagram, BPC and APD are straight lines.

$$AP = 10, PD = 15, BP = 4 \text{ and } PC = 6$$

- (i) Prove \triangle ABP is similar to \triangle CDP
- (ii) Deduce that AB || CD 2

(c)



The diagram shows a trapezium ABCD where AB || DC and AB = 4 cm, CD = 7 cm, DA = 13 cm, AC = 15 cm.

Let $\angle DCA = \theta$

(i) Find θ

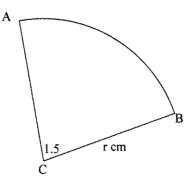
2

2

(ii) Find the exact area of the trapezium.

3

(a)



CAB is a sector of a circle with centre C and radius r cm. \angle ACB = 1.5 radians. The perimeter of the sector is 1.4 cm.

- (i) Find r.
- (ii) Find the area of the sector.
- (iii) Find $\angle ACB$ correct to the nearest degree.
- (b) 2007 + 2000 + ... is an arithmetic series.
 - (i) State the common difference.
 - (ii) Show working to decide whether 12 is a term in the series.
 - (iii) Find the maximum number of terms for which the sum of the series remains positive.
- (c) Solve the equation $79100 \times 1.002^{40} M(1.002^{40} + 1.002^{39} + ... + 1.002 + 1) = 0$ giving your value for M correct to the nearest integer.

- (a) For a particular curve y = f(x), which passes through the point (2, 0), we have f'(x) = 3x(2-x)
 - (i) Determine the nature of the stationary points of the curve.

3

(ii) Prove that f(-1) = 0

3

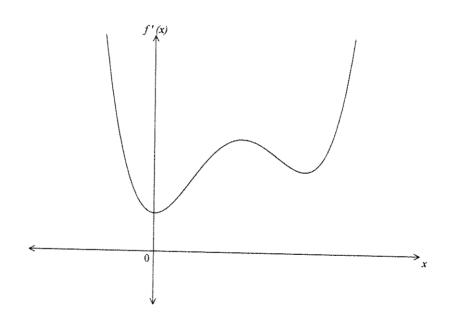
(b) (i) Sketch the curve $y = 2 \sin \pi x$, $0 \le x \le 2$

2

(ii) Find the area bounded by the curve $y = 2 \sin \pi x$ and the x axis from x = 0 to x = 2

3

(c)



The diagram shows a sketch of the gradient function of the curve y = f(x).

How many stationary points are on the curve y = f(x)?

1

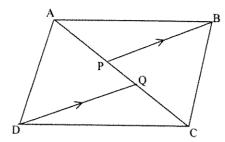
- (a) $x^2 2Ax + B = 0$ has two different real roots α , β
 - (i) Show that $A^2 > B$
 - (ii) Find the range of values of B if the sum of the roots is equal to the product of the roots.
- (b) (i) State the domain of the function $f(x) = \frac{1}{1 + \sqrt{x}}$
 - (ii) Without using calculus, find the range of the function $f(x) = \frac{1}{1 + \sqrt{x}}$
 - (iii) Use Simpson's rule with three function values to give a two decimal place approximation to

$$\int_0^1 \frac{1}{1+\sqrt{x}} dx$$

(c) Find the focus of the parabola $(x-1)^2 = 2(y+\frac{1}{2})$

1

(a)



In the diagram, ABCD is a parallelogram.

BP and DQ meet the diagonal AC at P and Q, respectively, where BP || DQ

- (i) Explain why $\angle BPQ = \angle DQP$
- (ii) Prove that \triangle ABP is congruent to \triangle DCQ
- (iii) Deduce that BQ = DP
- (b) The population P of a town is known to be changing exponentially. i.e. $P = P_0 e^{kt}$, P_0 , k constants, t time ≥ 0
 - (i) Show that $P = P_0 e^{kt}$ satisfies the equation $\frac{dP}{dt} = kP$
 - (ii) At the start of 2001 the population was 25 000 and at the start of 2007 it was 30 000. Prove that the continuous growth rate is approximately 3% p.a. 3
- (c) Simplify $(\sqrt{5} 2)^4 (\sqrt{5} + 2)^5$

- (a) (i) Show that $\frac{d}{dx}(xe^{-x}) = e^{-x} xe^{-x}$
 - (ii) Hence prove that $\int_{0}^{1} xe^{-x} dx = 1 2e^{-1}$
- (b) The region bounded by the curve $y = x + e^{-x}$ and the x axis from x = 0 to x = 1 is revolved about the x axis.

Prove that the volume of the solid generated is $\frac{\pi}{6} (17 - 24e^{-1} - 3e^{-2})$

- (c) A(-3, 0) and B(6,0) are two points in the number plane. P(x, y) is any point in the plane such that P is twice as far from B as it is from A. i.e. PB = 2PA.
 - (i) Prove that the cartesian equation of the locus of P(x, y) is $x^2 + 12x + y^2 = 0$
 - (ii) Describe the locus of P in precise geometrical terms.

1

(a) A particle is moving on the x axis. Its position at time t seconds is given by

$$x = t^2 (t - 6), \quad t \ge 0$$

- (i) At what times is the particle at the origin?
- (ii) Find expressions for the velocity \dot{x} and the acceleration \ddot{x}
- (iii) In what direction is the particle moving at t=2?
- (iv) For what values of t is the velocity increasing?
- (v) Find the total distance travelled during the first six seconds of the motion.
- (b) A rainwater tank is initially empty. The rate, R L/s, at which water is entering the tank is given by

$$R = 1 - \frac{1}{\sqrt{2t+1}}, \quad t \ge 0$$
 is the time in seconds

- (i) Find the rate at which the tank is filling after one minute.
- (ii) The tank is full to its capacity after 66 minutes. Explain why the capacity of the tank is less than 3960 L.
- (iii) Determine the capacity of the tank.

(a) Sketch the curve $y = \ln(1 - 2x)$

2

(b) $m \sin x = n \cos x$ where m, n > 0 and $0 < x < \frac{\pi}{2}$

Prove that $\sin x \cos x = \frac{mn}{m^2 + n^2}$

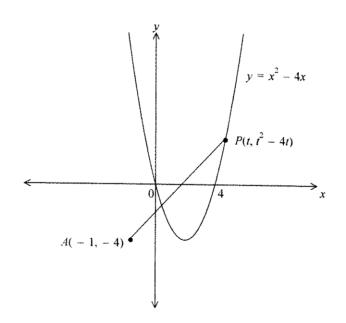
3

(c) Let $f(t) = 2(t-2)^3 + t + 1$ where f(1) = 0

By considering f'(t) or otherwise deduce that f(t) = 0 only if t = 1

2

(d)



The sketch shows the parabola $y = x^2 - 4x$ and the point A(-1, -4)

Let $P(t, t^2 - 4t)$ be any point on the parabola and let $AP^2 = I$

(i) Show that $l = (t+1)^2 + (t-2)^4$

2

(ii) Hence or otherwise find the minimum length of AP.

3

End of Examination

Standard Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \sin^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a \geq 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_e x$, x > 0

· au 1

$$(L) = \underbrace{x(z+i)}_{x+i} = c$$

(c)
$$-5 \le 3x + 4 \le 5$$

 $-9 \le 3x \le 1 \implies -3 \le x \le \frac{1}{3}$

(d)
$$\ln 3^{x} = \ln 2$$

 $\therefore \times \ln 3 = \ln 2 \implies x = \frac{\ln 2}{\ln 3} = 0.63$, $2d.p.$

(e)
$$y = 1 + x^{-1}$$

 $\frac{dy}{dx} = -x^{-2} = -\frac{1}{x^2}$

$$(f) \frac{(2x+9)^4}{4 \times 2} = \frac{(2x+9)^4}{8}$$

(a)
$$\therefore 0 = 2x^{2} - 5x + 2$$

$$\Rightarrow (2x - 1)(x - 2) = 0$$

$$\begin{cases} x = \frac{1}{2} & \text{ or } 2 \\ y = 2 & \text{ or } 8 \end{cases}$$
(b) $(\frac{1}{2}, 2) \text{ and } (2, 8)$

(b) (i) grd
$$AB = \frac{6}{8} = \frac{3}{4}$$

(ii) AB is
$$y-0=\frac{3}{4}(x+4)$$

.: $4y=3z+12$
!4: $3x-4y+12=0$

(ii)
$$CD = \frac{12-4+12}{\sqrt{3+4^{2}}} = \frac{20}{5} = 4$$

(iv) we have
$$D \neq 0$$
 5 ... $DB = 3$

(c)
$$y' = 3x^2 - 4x = 3 + 4$$
 at $x = -1$

: tangent is
$$y + 3 = 7(x + 1)$$
 will do

19. $y = 7x + 4$

$$(a) I = 6 \int_0^2 \frac{2x}{x^2 + 2} dx$$

$$= 6 \left[\ln(x^2 + 2) \right]_0^2 = 6 \left(\ln 6 - \ln 2 \right) = 6 \ln 3$$

(b) (i)
$$\angle BPA = \angle DPC$$
, vertically opposite
$$\frac{PB}{PC} = \frac{PA}{PD} = \frac{2}{3}$$

$$\therefore \triangle ABP \parallel \triangle CDP$$
, sim. $\triangle ABS = A$

(ii)
$$LA = LD$$
, As similar

But these are alternate angles

... AB || CD

(c) (i)
$$\cos \theta = \frac{7^2 + 15^2 - 13^2}{2 \times 7 \times 15} = \frac{105}{210} = \frac{1}{2}$$

 $\therefore \theta = 60^\circ$

(ii) Area =
$$\frac{1}{2} \cdot 7.15 \sin 60^{\circ} + \frac{1}{2} \cdot 4.15. \sin 60^{\circ}$$
, $LCAB = 0$
= $\frac{1}{2} \cdot 11.15 \sin 60^{\circ}$
= $\frac{1}{2} \cdot 11.15$. $\sqrt{3}$ = $\frac{165\sqrt{3}}{4}$ cm²

(a) (i) are
$$AB = 1.5 r$$

$$1.5r + 2r = 1.4$$

$$3.5r = 1.4 \implies r = \frac{1.4}{3.5} = 0.4$$

(ii) Area =
$$\frac{1}{2}(0.4)^{2}(1.5)$$
 cm² = 0.12 cm²
(iii) $1.5^{2} = 1.5 \times \frac{180}{17}^{0} = 86^{0}$, never degree

(4) (i)
$$d = 2000 - 2007 = -7$$

(ii)
$$T_n = 2007 - 7(n-1) = 12$$

$$\therefore 7(n-1) = 1995$$

$$n-1 = 285 \quad \text{as } n = 286$$

(iii) We need
$$\frac{n}{2} (4014 - 7(n-1)) > 0$$

(C)
$$...$$
 79100 × 1.002 40 $- M (1.002 41 $-1)$ = 0$

$$M = 79 100 \times 1.002^{*0} \times 0.002 = 2007$$

$$1.002^{*'} - 1$$

neaest integer

· Question 5

• (a) (i)
$$f'(x) = 0 \implies 3x(a-x) = 0$$

• (x = 0, 2

. at x = 0 there's a minimum turning point q at x = 2 there's a maximum turning point

(ii) Since
$$f'(x) = 6x - 3x^2$$

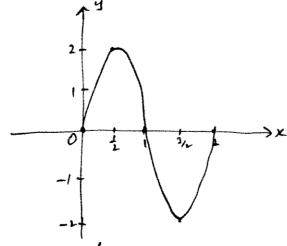
then $f'(x) = 6x^2 - 3x^3 + C = 3x^2 - x^3 + C$

:
$$f(2) = 12 - 8 + c = 0$$
 .: $c = -4$

$$\therefore f(x) = 3x^2 - x^3 - 4$$

$$f(-1) = 3 + 1 - 4 = 0$$

(i)



(ii)
$$A = 2 \int_{0}^{1} 2 \sin \pi x \, dx = \frac{4}{\pi} \left[-\cos \pi x \right]_{0}^{1}$$

= $\frac{4}{\pi} \left(1 + 1 \right) = \frac{8}{\pi} u^{2}$

(a) (i) ...
$$\Delta > 0 \Rightarrow 4A^{1} - 4B > 0$$

or $A^{2} > B$

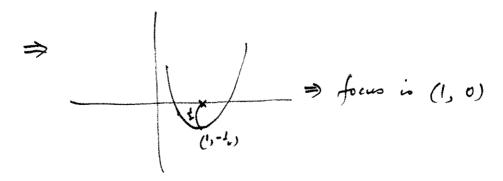
(ii) We have
$$2A = B$$

 $\therefore 4A^2 = B^2$
 $\therefore \text{ from (i)}, B^2 > 4B$
 $\Rightarrow B(B-4) > 0 \Rightarrow B < 0 \text{ or } B > 4$

(iii)
$$I \approx \frac{1}{6} \cdot 1 \int_{1}^{1} \frac{1}{2} + \frac{1}{4} \times \frac{1}{1 + \sqrt{0.5}}$$

$$= 0.64, 2 d.p.$$

(c) Vertex =
$$(1, -\frac{1}{2})$$
, $4a = 2$



· Question 7

(a) (i) alternate angles in 11 lines

In As ABP, DCQ

LAPB = LCQD, both sufferents of equal angles in (i)

LBAP = LDCQ, alt. angles in // lines AB, DC

AB = DC, opp. sides of //ogram

. . DABP = DDCQ, AAS

(iii) Join BQ, DP

From (ii), BP = DQ

and BP || DQ, given

. . BPDQ is a logran [one pair of off sides equal and parallel]

. . BQ = DP , off. sides of /ogran

(1) (i)
$$\frac{dP}{dt} = P_0 e^{kt} \times k = k \left(P_0 e^{kt} \right) = kP$$

(ii) 2001, t=0, f=250002007, t=6, f=30000 P=25000eand $30000=25000e^{6k}$

 $e^{6k} = \frac{20}{25} \implies 6k = \ln(\frac{6}{5}) \text{ i.e. } k = \frac{1}{6}\ln(\frac{6}{5})$

is growth rate a 3% c.a.

(c) = $((\sqrt{5}-2)(\sqrt{5}+2))^4(\sqrt{5}+2) = (5-4)^4(\sqrt{5}+2) = \sqrt{5}+2$

(a) (i)
$$d(x-e^{-x}) = e^{-x}(1) + x(-e^{-x})$$

= $e^{-x} - xe^{-x}$

(ii) From (i),
$$x e^{-x} = e^{-x} - d(xe^{-x})$$

$$\int_{0}^{1} x e^{-x} dx = \left[-e^{-x} - xe^{-x}\right]_{0}^{1}$$

$$= -e^{-1} - e^{-1} - (-1 - 0)$$

$$= 1 - 2e^{-1}$$

(4)
$$V = \pi \int_{0}^{1} (x + e^{-x})^{2} dx$$

$$= \pi \int_{0}^{1} x^{2} + 2x e^{-x} + e^{-2x} dx$$

$$= \pi \int_{0}^{1} x^{2} + e^{-2x} dx + 2\pi (1 - 2e^{-1}) \quad \text{from } (e)(ii)$$

$$= \pi \left[\frac{x^{2}}{3} - \frac{1}{2} e^{-2x} \right]_{0}^{1} + 2\pi (1 - 2e^{-1})$$

$$= \pi \left(\frac{1}{3} - \frac{1}{2} e^{-2} - (0 - \frac{1}{2}) \right) + 2\pi (1 - 2e^{-1})$$

$$= \pi \left(\frac{5}{6} - \frac{1}{2} e^{-2} \right) + 2\pi (1 - 2e^{-1})$$

$$= \frac{\pi}{6} \left(5 - 3 e^{-2} + 12 - 24 e^{-1} \right)$$

$$= \frac{\pi}{6} \left(17 - 24 e^{-1} - 3 e^{-2} \right)$$

$$\Rightarrow (x-6)^{2} + y^{2} = 4 ((x+3)^{2} + y^{2})$$

$$x^{2} - 12x + 36 + y^{2} = 4x^{2} + 24x + 36 + 4y^{2}$$
or $3x^{2} + 3y^{2} + 36x = 0$

$$14 \quad x^{2} + 12x + y^{2} = 0$$

(a) (i)
$$x = 0 \Rightarrow t^{2}(x-6) = 0$$
 is at $t = 0, 6$

(ii)
$$x = t^3 - 6t^2$$

 $\therefore \dot{x} = 3t^2 - 12t$ and $\dot{x} = 6t - 12$

(iii)
$$t=2$$
, $\dot{x}=12-24 < 0$
... moving from night to left
is negative direction

(iv) v is increasing what is >0
$$\Rightarrow 6t-12>0 \text{ or } t>2$$

(v)
$$v=0$$
, $3t(t-4)=0$, $t=0$, 4

when $t=4$, $x=16(-2)=-32$

[$t=0$, $x=0$; $t=6$, $x=0$]

(b) (i)
$$t = 60$$
, $R = 1 - \frac{1}{\sqrt{121}}$ $L/s = \frac{10}{11}$ L/s

(iii)
$$\frac{dV = 1 - (2t+1)^{-\frac{1}{2}}}{dt}$$

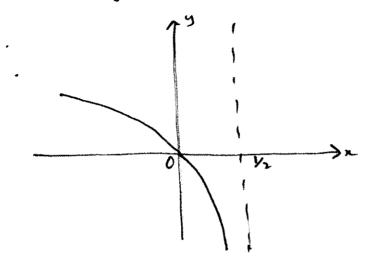
$$\therefore V = t - 2(2t+1)^{\frac{1}{2}} + c \quad \text{if } V = t - \sqrt{2t+1} + c \quad [t=0, V=0]$$

$$\vdots \quad 0 = 0 - 1 + c, c = 1$$

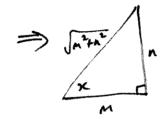
$$V = t - \sqrt{2t+1} + 1$$
 [t= 66 min, its full]

(a)
$$1-2x>0 \Rightarrow 2x<1 \text{ or } x<\frac{1}{2}$$

 $2=0, y=0$



(b) ...
$$M = 1$$
 or $A = \frac{1}{M}$



(c)
$$\int_{0}^{t} (t) = 6(t-2)^{2} + 1 > 1 > 0$$
 for all t

... f(t) increases for all t

> curve could only cut t axis once

=> f(t) = 0 only if t = 1

ie Af(t)

(d) (i)
$$l = AP^2 = (t+1)^2 + (t^2-4t+4)^2$$

= $(t+1)^2 + ((t-2)^2)^2$
= $(t+1)^2 + (t-2)^4$

(ii)
$$\frac{dl}{dt} = 2(t+1) + 4(t-2)^{3}$$

$$= 2(2(t-2)^{3} + t+1)$$

$$= 0 \text{ only if } t=1 \text{ from (c)}$$

$$6R \text{ use } t \text{ oth } = 2(6(t-2)^{2} + 1) > 0 \text{ if } t=1$$

$$[\text{in fact } > 0 \text{ for all } t]$$

$$\Rightarrow \min l \text{ when } t=1$$

$$\Rightarrow \min l \text{ otherwise } l=Al^{2}$$

$$\therefore \min l \text{ anyth } AB = \sqrt{2^{2} + 1} = \sqrt{5}$$